

Lu Research Group
Bioinorganic Engineering
From Innovative Design & Synthesis toward Novel Biomedical Application
Our team welcomes you to join the interdisciplinary research covering chemistry, material science, biology, and biomedical engineering.
Welcome to join our lab!!!
We are looking for international MS and PhD students who are enthusiastic, honest, and passionate about research.

Research Interests
Bioinorganic Engineering
Utilization of metal ions as structural and functional motif assembles metalloenzymes and metalloproteins for a variety of essential processes in biological system. Through artificial evolution, bioinorganic engineering defines the translational incorporation of the inherited nature of synthetic metallocofactors, including (catalytic) reactivity, redox activity, photophysical properties (X-ray, UV-vis, NIR, etc.), and magnetic properties, into organic and inorganic polymers for functional applications. In this bioinorganic engineering lab, we aim to control the generation, capture, stabilization, delivery, transformation, and detection of bioactive gaseous molecules, such as nitric oxide, dihydrogen, and carbon dioxide. Through the iterative study on structure and reactivity of dinitrosyl iron unit [Fe(NO)2], metal-pyrazolate framework, and MOF-derived metal nanoparticle@carbon materials, controlled manipulation of bioactive gaseous molecules will be translated to cancer treatment and regenerative medicine.
Spatial, Dosage, and Temporal Control on the Delivery of Nitric Oxide for Regenerative and Cancer Therapy
![]() | ![]() | ![]() |
---|---|---|
![]() | ![]() | ![]() |
![]() | ![]() 15 | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() NO_8 | ![]() NO_9 |
![]() NO_10 | ![]() 圖片4 | ![]() 圖片11 |
![]() NO_17 | ![]() NO_18 | ![]() NO_19 |
![]() NO_20 |
Nitric oxide features ubiquitous physiology in respiration, (cardio)vascular, myocardial, immune, and neuronal system. Difficulty in the controlled delivery of nitric oxide, however, retards the translational application in pharmacology and biomedical engineering. In our lab, we utilized the dinitrosyl iron complexes (DNICs) as a novel prodrug for the delivery of nitric oxide and for the NO-related biomedical application. Relying on our development of the synthetic strategy for DNICs, a chemical library of DNICs was established.In terms of controlled release of nitric oxide, we discovered the controlled release of nitric oxide from DNICs triggered by pH, O2, temperature, photolysis, and magnetic field. On the other hand, we successfully applied DNICs for the NO-related anti-aging effect in C. elegans; vasodilation, myocardial relaxation, and myocardial inotropy effect in zebrafish; and reduction of blood pressure, enhancement of angiogenesis, osteogenesis, neurogenesis, tumor vessel normalization, anti-cancer effect, and anti-inflammatory effect in mouse. Regarding the development of DNICs for the delivery of nitric oxide in vivo, we welcome you to continue the investigation of DNICs for NO-related biomedical application through the conjugation with alternative biomedical materials and devices.
Controlled Generation and Detection of Dihydrogen
![]() H2_2 | ![]() H2_1 | ![]() |
---|---|---|
![]() H2_3 |
Besides its utilization as a renewable and clean energy source, dihydrogen features unexplored potential in inflammatory disease relying on its antioxidant reactivity, in particular, toward hydroxyl radical. However, limited solubility of H2 in aqueous solution and lack of a delivery system hamper the therapeutic efficiency and retard its biomedical application. In our lab, we discovered DNICs as a precursor for preparation of the Fe@FeOx electrode featuring electrocatalytic HER reactivity. To control the location of delivered dihydrogen, development of metal-organic frameworks (MOF) derived metal@porous carbon as implantable materials for catalytic generation of dihydrogen is undergoing. Moreover, MOF-derived metal nanoparticles shielded by porous carbon provide a mechanism for the steady, instead of burst, generation of dihydrogen.
Direct Air Capture and Controlled Transformation of Carbon Dioxide
![]() CO2_1 | ![]() CO2_2 | ![]() CO2_3 |
---|

Tsai-Te Lu
魯才德 Dr.Tsai-Te Lu (Shawn)
國立清華大學生物醫學工程所;國立清華大學化學系
Institute of Biomedical Engineering & Department of Chemistry, National Tsing Hua University
Phone: 03-5715131 #35501
E-mail: ttlu@mx.nthu.edu.tw
EDUCATION
-
B.S. in Chemistry, National Tsing Hua University, 2005.
-
Ph. D. in Chemistry (Prof. Wen-Feng Liaw, specialized in bioinorganic chemistry), National Tsing Hua University, 2009.
RESEARCH EXPERIENCE
-
Associate Professor 08/2020 - present
Institute of Biomedical Engineering, National Tsing Hua University
-
Assistant Professor 08/2017- 07/2020
Institute of Biomedical Engineering, National Tsing Hua University
-
Assistant Professor 08/2013 - 07/2017
Chung Yuan Christian University
-
Post-doc Research Fellow, Massachusetts Institute of Technology
Advisor: Prof. Stephen J. Lippard 03/2011 - 07/2013
-
Post-doc Research Associate, National Tsing Hua University
Advisor: Prof. Wen-Feng Liaw 12/2009 - 02/2011
-
Graduate Research Assistant, National Tsing Hua University
Advisor: Prof. Wen-Feng Liaw 08/2005 - 12/2009
AWARDS AND HONORS
-
Young Investigator Award, Shui-Mu Foundation of Chemistry (2023)
-
Excellent Junior Research Investigators, MOST, Taiwan (2020)
-
科技部GASE中心規委校亮點實驗室, MOST, Taiwan (2020)
-
Young Investigator Award, College of Engineering, NTHU, Taiwan (2020)
-
Young Investigator Award, Chao-Jen Lee (李昭仁) Biomaterial Research Foundation (2019)
-
Outstanding Young Investigator Award, Annual Meeting of Biomaterials and Controlled Release Society in Taiwan (2019)
-
Graeme-Hanson-AsBIC Early Career Researcher Award, Society of Biological Inorganic Chemistry (2018)
-
Rising Star Award, 43rd International Conference on Coordination Chemistry (2018)
-
Visiting Scholar, Dept. of Chemistry Chonbuk National University, South Korea (2018)
-
Excellent Teaching Award, Dept. of Chemistry, Chung Yuan Christian University (2016)
-
Excellent Mentor Award, Dept. of Chemistry, Chung Yuan Christian University (2016)
-
Recruitment of Special Outstanding Talents, MOST (2013)
-
Postdoctoral Research Abroad Program Fellowship, National Science Council (2011)
-
The Phi Tau Phi Scholastic Honor, The Phi Tau Phi Scholastic Honor Society of the Republic of China (2010)
-
NTHU President’s Scholarship, National Tsing Hua University (2006)
PATENTS
-
Tsai-Te Lu, Ting-Yu Chin, Cheng-Ru Wu. "ORAL PHARMACEUTICAL COMPOSITION AND METHOD FOR DELIVERING NITRIC OXIDE TO A PATIENT’S CIRCULATORY" US Patent Under application.
-
魯才德、金亭佑、吳承儒〝用於口服之醫藥組成物以及醫藥組成物用於製備將一氧化氮傳遞至患者的循環系統或大腦之口服藥劑之用途〞中華民國專利申請中
-
Tsai-Te Lu, Chieh-Cheng Huang, Han Chiu, Wei-Ping Wang, Rui-Ting Wang, Yi-Chieh Lai. "EXTERNAL DERMAL AGENT AND USE OF DINITROSYL IRON COMPLEX FOR PREPARING EXTERNAL DERMAL AGENT" US Patent Under application.
-
魯才德、黃玠誠、邱涵、王蔚平、王瑞婷、賴怡倩〝皮膚外用組成物以及雙亞硝基鐵錯合物用於製備美化皮膚的皮膚外用組成物之用途〞 中華民國專利申請中
-
Tsai-Te Lu, Yu-Ting Tseng, Tzu-Chieh Yu, Wen-Feng Liaw. "PYRAZOLE METAL COMPLEX FOR ABSORBING CARBON DIOXIDE, METHOD FOR PREPARING PYRAZOLE METAL COMPLEX, AND METHOD FOR ABSORPTION OF CARBON DIOXIDE" US Patent Under application.
-
魯才德、曾宇霆、游子頡、廖文峯〝用於吸附二氧化碳之吡唑金屬化合物、其製備方法、及吸附二氧化碳之方法〞 中華民國專利申請中
-
Yun-Ching Chen, Tsai-Te Lu, Yun-Chieh Sung "NANOPARTICLE, PREPARATION PROCESS AND USES THEREOF" US Patent App. 16/909,134.
-
陳韻晶、魯才德、宋雲傑〝奈米粒子及其製備方法與用途〞
-
Tsai-Te Lu, Hsiao-Wen Huang, Chia-Her Lin, Yu-Ting Tseng, Wen-Feng Liaw, Hsi-Ya Huang, Show-Jen Chiou "DINITROSYL IRON COMPLEX, PHARMACEUTICAL COMPOSITION COMPRISING THE SAME, COMPOSITE MATERIAL COMPRISING THE SAME, AND USES THEREOF" US 10,538,545 B2.
-
魯才德、黃小紋、林嘉和、曾宇霆、廖文峯、黃悉雅、邱秀貞〝雙亞硝基鐵錯合物、包含該錯合物之藥學組合物或複合材料及其用途〞 中華民國專利 I666214
Lab Members

Principal Investigator

PhD Student

PhD Student

PhD Student

PhD Student